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Basic results in the theory of propagation of elastic-plastic waves have 

been obtained for the case of one-dimensional motion. 

The studies of wave propagation taking into account two displacements 

are now of greater importance in technical applications and experiments. 

In particular,analysis of the propagation of elastic-plastic waves due 
to combined loading is of great interest in the study of the laws of 

dynamic strength of materials. 

At present many papers are being devoted to the experimental and 

theoretical study of the laws of strength of materials allowing for 

combined loading with static load application. There are neither experi- 

mental nor theoretical studies of combined loading with dynamic load 

application. 

The solution of two problems of propagation of elastic-plastic waves 

allowing for combined loading will be analysed below. 

1. l’he problem of the compression-shear impact of two free 
slabs. Assume that two plates of elastic-plastic material collide with 

each other end-face to end-face. Assume that the velocities of the plates 

are directed in the planes of and are not notmal to the impacting faces 

(Fig. 1). 

In this case there are of course two types of impact posgible: 

(1) ‘Ihe displacements of the prisms at the impacting faces are equal, 

or the shear stresses at these faces are smaller than the maximum fric- 

tional stress rmax ; 

(2) lhe shear stresses on the impacting faces are equal to rmax. In 

this case, the displacements at these faces are different, and there is 
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a discontinuity. 

Owing to the appearance of shear stresses on the impacting faces, cm- 

pression waves as well as shear waves will arise in the prisms. 

‘Ihe general dynamic equations of a continuous medium have the well- 

hnom form: 

a%4 a=, 
pw=-&-+ 

aav a*, a*, 
+-+2 Pat?=‘-& ay (1.1) 

In these equations, u, u, and w are displacements, and Xx, . . . , ZL 
are canponents of the stress tensor. Assume that Zz = 0 (Fig. 1) every- 
where, andZ =Z = 0 only at the boundaries. Assume also that the 
dimensions of the’plates in the direction of the Oy axis are sufficiently 

large in comparison with the dimensions in the directions Ox, Oz. 

r b i II 

v,\ II I -- _____I*,<.t ------I, 

Integrating both parts of (1.1) with respect to z fmm 0 to h, we ob- 

tain 

In these equations the superscript ’ next to a quantity denotes an 

average along the Oz axis: 

hence 

h h 

u” = ; 

. 

s 
u (z, z, t) dz, 9 =+ v(z,z, 1)dz 

5 
0 0 

24” = d(z, q, u” = 7P (z, t) 



On the propagation of elastic-plastic vavcs 1081 

We can now write the laws of elastic-plastic deformations for the 

quantities averaged: 

xg_&&_ ,. (exxo - e”), Xv0 = f $ exyo 
t 

0 

YvO- 3’ = + s (eyyo - e') , (1.3) 
1 

Y,” = $5 evzo 
1 

1 
z t- 3’ LX + > (ezzo -e’), 3 = 3ke” 

1 

‘Ihese relations will be valid in the region both of &axial and of two- 

dimensional state of stress, but the functions uio = o”(eio) will be 

different (Fig. 2). 

‘The position of the transition point (point II, Fig. 2) depends only on 

the intensity of the compression wave, but the character of the curve in 

the region of two-dimensional state of stress may depend on the compressive 

and the shear stresses as well as on the magnitude of the mean hydrostatic 

pressure 0. 

EBy virtue of the symnetry of the problem we have 

u” = u” (5, l), 9 = u” (2, 1) 

and therefore, in (1.2) 
ax, ay, 
- = 
ay -= aY 

0 

In (1.3) the two equations before the last reduce to identities. 

Since u” and v” is independent of y, we get 

em0 = 0 (1.4) 
We also have 

z* = 0 

lhus in the five equations (1.3), since two of them reduce to ident- 

ities, the unknowns will be Xx0, Yyo, Xro, elz, i.e. four in nunber. 

Nevertheless there will be no contradiction, since the third equation 

of (1.3) is a consequence of the first trro. 

Actually, because try0 = 0 and Zzo = 0, we get 

e” = f (kc” + erzo), 0 = $(xp+Yv) 

Therefore the first two equations of (1.3) yield 
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Combining these two equations, we get 

_ $ (X0 + Y;) = $ z6 [f exxo - $ elto] 
1 

& the other hand, the third equation of (1.3) yields 

As we see, our assertion has been proved. We shall thus’have 

$ (X,O + Y/) = k (exxo + mezzo) 

From these equations one can determine Xx0 and Yyo as functions of 

a u0/d x , and d u”/a y for the region where the stress is assumed to be 

that of compression as well as shear. 

Equations (1.2) will of course have the form 

In the uniaxial stress region II o 0, and we shall have the following 

equation of motion: 

(1.7) 

‘fhe boundary between the uniaxial stress region and the two-dimensional 

stress region in the plane of the variables x 

line at least up to the time of reflection of 

fact3 of the impacting bodies. 

Let the equation of this straight line be 

x = bt 

and t will be a straight 

the waves from the free 

(14 
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This straight line is a wave of strong discontinuity. In front of it 

there will move systems of continuous Riemann waves, which arise from the 

solution of equation (1.7). This solution, as can easily be seen, yields 

the integral 

ux 

ht = s 4 (GJ du = - Y (UIX) 
0 

(1.8’) 

Behind the wave of strong discontinuity there will be a region with 

constant parameters. lhe behavior of the motion can be better described 

by turning to Fig. 3. In the region of the Riemann waves I the parameters 

of motion change continuously and satisfy equation (1.7). In region III 

the parameters of motion are constant and equal to their values on Ot. 

Fig. 3. 

‘Ihe transition from region III to region II is accomplished by a jump 

(x = bt is the wave of strong discontinuity), and in the latter region 

the parameters of motion are also constant. The wave x = bt is the wave 

of combined loading. 

Equation (1.6) should be satisfied in region III. 

Since in this region the parameters of motion are constant, (1.6) is 

satisfied identically. 

It thus appears unnecessary to know the ai = oi(ei) diagram for the 

analysis of the motion. It will be shown below that this is not so. 

At the wave of strong discontinuity, compatibility equations contain- 

ing deformation rates and stresses must be fulfilled. When solving these 

equations it becomes necessary to use the theory of plastic deformations. 

At the front of the strong discontinuity the displacements u and v 
should be continuous, i.e. 

u3 (2, t) = 0, 113 (r, t) = u1(5, t) 

Differentiating these equations along the wave of strong discontinuity 
yields 
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lhe momentum equations will give 

bpv,t = - xoyg, bp (Q - un) = X,O - X,,” (1.10) 

For the case of no slipping, at the impacting faces, i.e. at x = 0, 

we shall have 

u3t = uo, V3f = vo (1.11) 

where u,, and uO are the given velocities. 

In the presence of slipping, however, on the impacting faces we shall 
have 

u3t = uo, X,O = Tmax (1.11’) 

let us recall that these equations should supplement the Riemann inte- 

grals (1.8). 

Since the stresses Rx,, x0,,, Xux and the deformations ujx, vjx 

should satisfy equations (1. S), the stresses can be expressed in terms 

deformations from that equation. 
of 

), By virtue of this fact, seven equations (1.8), (1.91, (l.lO), (1.11 
and (1.11’) will serve for the determination of the seven quantities: 

vjt’ U3t, TV b, r3x, ujx, ulx. 

Finally we shall note that when solving system (1.5) the stress in- 

tensities ai and oil appearing there will differ in their dependence on 

their arguments, since the transition through the discontinuity wave re- 

presents a combined loading. 

2. The case of elastic deformations. For elastic deformations 
0. = Ee,. and thus (for the sake of simplifying the notation the super- 

siripts ‘have been dropped) the system (1.5) becomes: 

$Xx-f ; 
1 

2 au 1 Y!,=--E a-;i;;-se,, 1 
-$(X,+Y,)= $E[+*-+$] 

+-(X,+Yd=k(~+ezz) 

From this follows 

X,=$E(g-ee,,), - k ;-z + e,,) = f E ($err 

or 

(2-l) 

1 au -- 
3 ax > 
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X,=+E(I--B)+$ B=;+ii (2.2) 
__ 
2E 

The following expression is obtained for the stress XY: 

x =‘E!k-Gi% 
Y 

-if ax - a2 

‘lhe equations of motion (1.21 will be the following: 

(2.3) 

(2.4) 

In the given case instead of (1.8) we obtain 

v/ 
e 

uu = - 
T- 

%f +&Z=o, usl + bu, = u1t + &Cc 

(2.5) 

(2.6) 

From the first equation in (1.101, on the basis of (2.31, we get 

bpusl = - Gvsx 

If the first equation of (2.61 is considered, we get 

(2.7) 

As is to be expected, the wave of strong discontinuity moves with the 

velocity of so-called transverse waves. 

‘lhe second equation of (1.101 yields 

bP (ust - uj = a (us, -. ulr) (2.8) 
From (2.61 we get 

nst - Ulf = - lJ (%x - &r) (2.9) 

Equations (2.8) and (2.9) are linear homogeneous equations in terms of 

differences of velocities and deformations. ‘lhe determinant of this 

system is not equal to zero, and thus we get 

n.31 = Ulfl %x =Qc 

‘thus we have shown that the longitudinal velocities and deformations 

are continuous. FJy the same token it has been shoarn that with elastic 

deformations the presence of shear waves does not change the character 

of the propagation of longitudinal waves. ‘lhe law of the independence of 

the action of forces is valid. 

3. ‘Ihe problem of compression-shear impact of two slabs 
lying between rigid planes. ‘lhe problem analyzed in Section 1 was 

solved approximately for the case of plastic deformations, because 
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rigorous study of the averaged values was impossible. An exact solution 

of the dynamic equations of the theory of plasticity when one of the dis- 

placements is limited beforehand, will now be given. 

Hence, let IU E 0 and u = u(x) and u = u(x). Obviously, the condition 

v I 0 will be satisfied if the plastic material lies between two absolutely 

rigid walls. With the assumed displacements we get exz = eyz = 0, and 

consequently Yz = X . z 

Moreover, with e = a u/ax we have 

(3.1) 

As we see, 

of au/ax 

all four stresses Xx, Yu, Zz, Zr are determined as functions 

and dv/Jx and are functions of x only. 

In this case the equations of motion become 

a%4 ax, 
P 

a% ay, -=- 
ata a2 9 Pata== (3.2) 

Substitution from (3.1) yields 

‘Ihese equations are analogous to equations (1.61, and thus the problem 

of the impact of slabs can be solved quite analogously as in Section 1. 

Note that the experimental realization of the conditions of this prob- 

lem is entirely possible, if a soft metal is used for the impacting slabs 
and the impact takes place between hardened steel plates. 

All problems analysed above are directly analogous to the problem of 

transverse impact upon a flexible coupling. This permits the complete use 

of the experimental data mentioned in this paper for the study of trans- 

verse impact. 

4. Torsion-compression impact. Let us investigate the impact of 

a hollow cylinder rotating about its axis of symnetry and having a for- 

ward velocity along this axis upon another hollow cylinder (Fig. 4). 
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Fig. 4. 

Obviously , owing to the presence of friction along the end surface, 

there will arise on it shear and compressive stresses, which will twist 

and conpress both cylinders. Let us write the equations of motion for a 

continuous medium in cylindrical coordinates 

Where u is the axial and u is the circumferential displacement. 

Averaging equations (2.1) over the thickness of the cylinder, and 

assuming that the stresses Xr and R,CJ on the surface of the cylinder are 

equal to zero, we get 

since 

-.~ 
r.-h 

Y $\a(X,,r)=O 

rc h 

r.+h 

s a (r2&) = 0 
r,- h 

Because eee = 0 and Rr = 0, we obtain 

8 = f (exxo + eTTo), 

Analogously to the previous paragraph 

0 

Xx- co = $ u$O- (exxo - co), 
t 
0 

a =+(xX+&) 

we get 

Q = 3ke”. 

avo 
etio = az 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Inasmuch as eee = ee, = exr = 0, the deformation intensity has the 

form 
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(4-Q 

From the four equations (4.4) one can determine Xx0, 6o”, X0’, err by 

using exxo = duo/an and exg”= av”/dx. 

After this development, equation (4.2) will be of the same form as 

equation ( 1.6). Iherefore, from the mathematical point of view, the prob- 

lem has been reduced to the same one as in the canpression-shear impact. 

Translated by Y. I.Y. 


